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=OR RATE REDUCTION O F  PARITY CHECKED TELEMETRY DATA 

BY A LIKELIHOOD DELETION STRATEGY 

By Dale R .  Lunib and Frank Neuman 
Ames Research Center 

SUMMARY 

Sc ien t i s t s  with experiments on interplanetary space probes receive 
telemetered data  which contain undetected e r ro r s .  The significance of t he  
e r ro r  rate depends upon the  experiment. This paper presents a technique f o r  
reducing the  e r ro r  rate by delet ing words t h a t  are l i k e l y  t o  have e r ro r s  which 
a r e  not detected by a p a r i t y  check code. 
between the  word e r ro r  rate and the word de le t ion  rate f o r  binary data  words 
tha t  are received from a deep space probe a t  a constant transmission rate. 
These trade-offs are based on a consideration of t he  matched f i l t e r  (data 
demodulator) l e v e l  output of each received b i t ,  i n  addi t ion t o  the  binary 
decision data  usually used from the  data  demodulator. 

Consequently trade-offs can be made 

In  the report ,  the theore t ica l  foundations f o r  t he  proposed e r ro r  detec- 
t i o n  scheme a re  l a i d .  It is shown t h a t  t he  theore t ica l  model agrees reason- 
ably w e l l  with r e s u l t s  obtained from exis t ing space communications hardware. 
Also, i n  the  i n t e r e s t  of a simple appl icat ion of t he  described scheme, it was 
determined tha t  a four l e v e l  quantization of t h e  da ta  demodulator output as 
w e l l  as a four category specif icat ion of t he  word qua l i ty  was suf f ic ien t  t o  
approach the  performance of t he  method with t h e  ac tua l  l eve l s  used i n  the  
elaborate calculat ions.  

INTRODUCTION 

Coding studies applicable t o  space communications a r e  being car r ied  on by 
several  invest igat ing groups (e .g . ,  r e f s .  1, 2, and 3 ) .  
techniques under development involve f a i r l y  sophisticated encoding schemes. 
However, i n  t h e  in t e re s t  of spacecraft s implici ty  and r e l i a b i l i t y ,  telemetry 
schemes usually have been kept as simple as possible.  For instance, Pioneer V I  
and Mariner I1 and IV have provision only for  d i sc re t e  changes of telemetry 
b i t  ra tes ;  a l s o  a fixed telemetry word s i ze  is used with a simple check f o r  
e r rors  i n  the  word based on one p a r i t y  b i t  added per word. 
permits detect ion of an odd number of e r ro r s  per word. Words tagged as having 
a p a r i t y  e r ro r  are usually deleted while words with an even number of e r ro r s  
go undetected. 
e r ro r s .  

The more powerful 

This p a r i t y  check 

This paper describes a method f o r  reducing these undetected 

The method is  based on information contained i n  t h e  da ta  demodulation 
process. 
bit-by-bit decisions of binary "zeros" or "ones" with no regard f o r  t he  
qua l i t y  of t he  individual received b i t s .  The scheme described uses matched 

Matched f i l t e r  detect ion of biphase modulated s ignals  makes possible 



f i l t e r  output values (at t h e  b i t  decision t i m e s )  t o  compute the  l ikelihood 
t h a t  a word is i n  e r ro r  even though p a r i t y  has not detected the  e r ro r .  Based 
on a predetermined e r ro r  probabi l i ty  threshold, words suspected of containing 
an e r ro r  may be deleted.  

The de le t ion  scheme proposed here is espec ia l ly  applicable t o  deep space 
probe telemetry da ta .  
experiments f o r  measuring physical phenomena. 
are cas t  i n to  words of fixed s i z e  and a r e  then combined i n t o  data  frames by 
time d iv is ion  multiplexing. 
t he  e r ro r  r a t e  which i s  t h e  same  f o r  a l l  experiments. However, f o r  meaningful 
data ,  some experiments are affected more than others by t h e  e r ro r  rate. 
example, i n  experiments measuring t rans ien t  phenomena, data  words i n  e r ro r  
cannot be readi ly  recognized by values of adjacent data  points.  Thus, t h i s  
type of experiment requires  a very low e r ro r  r a t e .  
experiments measuring slowly varying phenomena, a wrong data  word might be 
e a s i l y  recognizable. Thus, t he  experimenter could t o l e r a t e  a r e l a t i v e l y  high 
e r ro r  rate. Such d i f f e ren t  requirements c rea te  a problem when a decision must 
be made t o  decrease the  b i t  rate as the  space probe ge t s  f a r the r  away f romthe  
ear th .  This problem i s  a l lev ia ted  when there  i s  a measure of the  qua l i ty  t o  
be assigned t o  each word which has not been tagged i n  e r ro r  by the pa r i ty  
check. The experimenters requiring the  lowest undetected e r ro r  r a t e  can then 
reduce the  e r ro r  rate by delet ing questionable words. 

A deep space s c i e n t i f i c  probe typ ica l ly  ca r r i e s  several  
The data  from these experiments 

The spacecraft-to-earth comunications l i n k  s e t s  

For 

On the  other hand fo r  

The word de le t ion  scheme w a s  developed and t e s t ed  f o r  a data  channel with 
independent addi t ive Gaussian noise.  Specific a t t en t ion  was given t o  simplify- 
ing hardware requirements by searching f o r  t he  smallest number of b i t s  with 
which the  qua l i ty .of  t he  s ignal  a t  t he  matched f i l t e r  output could be charac- 
te r ized  without s ign i f icant  l o s s  of information. The search w a s  conducted by 
writ ing a computer program f o r  t he  model and t e s t ing  it with the  simulated 
data .  Also, a theo re t i ca l  formulation w a s  derived f o r  hardware design. 
Finally,  t he  scheme w a s  proven by using data  obtained from a t e s t  with 
Pioneer V I  equipment i n  conjunction with the  Goldstone Deep Space 
Instrumentation Fac i l i t y .  

n 
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SYMBOLS 

nuniber of b i t s  i n  a word 

probabi l i ty  of removing a zero e r ro r  word by s t ra tegy  S1 (measure of 
"bad" removal 

a rea  under t h e  normal probabi l i ty  d i s t r ibu t ion  curve corresponding t o  
a correct  b i t  i n  t he  quantization in t e rva l  j 

probabi l i ty  t h a t  a received b i t  r j  is  correct  given i t s  quantized 
I and D l e v e l  

area under the  normal probabi l i ty  d i s t r ibu t ion  curve corresponding t o  
an e r ro r  b i t  i n  t he  quantization in t e rva l  j 



probabi l i ty  t h a t  a received b i t  r is  i n  e r ro r  given i t s  P(Ej) j quantized I and D l e v e l  

channel b i t  e r r o r  probabi l i ty  'e 
Pevk event probabi l i ty  

PG probabi l i ty  of removing an untagged s ingle  e r ro r  word by s t ra tegy  
S1 (measure of "goodtr removal) 

t h a t  there  are "x" e r ro r s  i n  a word 
P (R/d )  

PWE word e r r o r  probabi l i ty  

P ( d )  

P(22E/#LE) 

probabi l i ty  of removal of an e r ro r  word by s t ra tegy  S2 given 

probabi l i ty  t h a t  l'x'l e r ro r s  occur i n  a word 

probabi l i ty  of two or more e r ro r s  i n  a word given t h a t  there  is 
not one e r r o r  i n  the  word 

RD de le t ion  rate 

W word 

de le t ion  threshold xr 
WORD ERROR PROBABILITY AND DELETION RATE BASED ON PARITY ERROR CHECK 

The following sect ions serve t o  introduce the  concepts of word e r ro r  
probabi l i ty  and word de le t ion  rate. It w i l l  be shown t h a t  with a p a r i t y  e r ro r  
check a cer ta in  number of words known t o  be i n  e r ro r  w i l l  be deleted,  thus 
reducing both the  word e r ro r  probabi l i ty  as w e l l  as the  number of data words 
accepted. 

In  data  transmission from space probes two types of data  formats have 
been predominantly used, namely, NRZ-L and NRZ-M. The abbreviation NRZ-L 
stands fo r  nonreturn-to-zero l e v e l  where a binary 1 
phase and a 0 by another phase of t he  transmitted signal; and NRZ-M stands 
f o r  nonreturn-to-zero mark where a phase change indicates  t h a t  a 1 w a s  sen t .  
For coherent detect ion of binary antipodal (phase s h i f t  keying) s ignals  by 
means of self-synchronization techniques, both data  formats possess ce r t a in  
advantages and disadvantages, which w i l l  be discussed i n  the  following 
sec t  ions.  

i s  represented by one 

Pa r i ty  Error Check Code f o r  NRZ-L Data 

The b i t  detector  demodulates t he  data  with phase ambiguity, a f t e r  b i t  
acquis i t ion.  This ambiguity means the  demodulated da ta  b i t s  may be t h e  t r u e  
phases representing the  binary 0 and 1 data  as transmitted,  or they may be 
the  complements of t he  o r ig ina l  da ta .  For NRZ-L da ta  t h i s  anibiguity can be 
resolved after the  b i t  acquis i t ion.  The t r u e  phase of t he  data  as transmitted 
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can be determined by inser t ing  known words per iodica l ly  in to  the data; however, 
these addi t ional  words reduce the  avai lable  data rate. The advantage of NRZ-L 
w i l l  become apparent i n  la ter  sections.  

The word e r ro r  rate detected by a p a r i t y  check can be calculated from t h e  
b i t  e r ro r  probabi l i ty .  For NRZ-L transmission which uses n - 1 data b i t s  per 
word, a p a r i t y  b i t  is  added f o r  each word, such t h a t  t h e  modulo two sum of the  
n b i t s  is  1 ( f o r  odd pa r i ty )  o r  0 ( fo r  even p a r i t y ) .  If an odd number of 
e r ro r s  occurs within a word, t he  p a r i t y  computation of the received data word 
w i l l  d isclose such e r ro r s .  If the  e r ro r s  a r e  s t a t i s t i c a l l y  independent, they 
can be represented by a binomial model where the  probabi l i ty  of a detected 
word e r ro r  is  

U 

j=i,3,5,. . . 
where Pe i s  the  b i t  e r r o r  probabi l i ty  and n i s  the  number of b i t s  i n  a 
word. 
compared t o  the remaining terms is  given by the conditional probabi l i ty  t h a t  
one e r ro r  occurs given an odd number of e r ro r s  occurs: 

A measure of the  r e l a t i v e  importance of the  first t e r m  of equation (1) 

P(lE/lE or  3E or  . . .) = P ( U )  
P(1E o r  3E or  . . .) 

For a seven b i t  word t h i s  conditional probabi l i ty  i s  p lo t ted  i n  f igure  1 as a 
function of Pe. This curve shows t h a t  for  P, less than 5 percent, the  
detected word e r ro r  r a t e  i s  within 1.5 percent of the probabi l i ty  tha t  one 
e r ror  occurs i n  a word: 

Since an e r ro r  condition i s  known t o  e x i s t  from the  p a r i t y  check, the  word is  
usually discarded, and thus 
the  data received. 

P(lE) a l s o  represents t h e  delet ion r a t e ,  RDJ i n  

The undetected word e r ro r  rate is  important s ince it determines whether 
t he  data can be used by experimenters. 
causes an undetected word e r ro r  condition whose probabi l i ty  can be expressed 
as 

An even number of e r ro r s  i n  a word 

n 

j=2,4,6, . . . 
("Pj(1 - PeIn-j 
J e  ( 3 )  

The r e l a t ive  predodnance of t h e  first term i n  t h i s  expression is  again repre- 
sented by the  conditional probabi l i ty  that t w o  e r ro r s  occur given that an even 
number of e r ro r s  occurs (see f i g .  1). This f igure  shows tha t  f o r  Pe less 
than 5 percent, t h e  undetected word e r ro r  r a t e  i s  dominated by the  probabi l i ty  
t h a t  two e r ro r s  occur i n  a word 

4 



The word e r ro r  probabi l i ty  based on the  words r emin ing  after s ingle  e r ro r  
words tagged by p a r i t y  have been removed is  then 

- - P(2E) 
1 - RD ( 5 )  

where RD is the  de le t ion  rate 

In  f igure 2 the  word e r ro r  probabi l i ty  has been p lo t ted  versus de le t ion  rate, 
with b i t  e r ro r  probabi l i ty  as a parameter. This curve is  shown f o r  both NRZ-L 
and NRZ-M data .  The der ivat ion of P and RD f o r  NRZ-M data  i s  given i n  t h e  
next sect ion.  
e r ro r  probabi l i ty  and de le t ion  rate fo r  the  same b i t  e r ro r  probabi l i ty .  

It is  noted that  NRZ-MTata have a consis tent ly  higher word 

Pa r i ty  Error Check fo r  NFU-M D a t a  

The adverse e f fec ts  o f  the  phase ambiguity i n  the  data  demodulator, which 
were discussed i n  the  previous section, can be avoided i f  the  value of t he  
d i g i t  i s  indicated by the  change of phase, or lack of change, ra ther  than by 
the  phase i t s e l f .  The NRZ-M format i s  one such method which can be viewed as 
a transformation from t h e  NRZ-L format. This transformation is i l l u s t r a t e d  i n  
f igures  3(a) and ( b ) .  The NRZ-M format i s  used f o r  Pioneer V I  telemetry data .  

Several problems result f romthe  choice of a t r ans i t i on  sens i t ive  code 
such as NRZ-M, pa r t i cu la r ly  when it i s  used i n  connection with a p a r i t y  check. 
The b i t  detector  usual ly  makes e r rors  singly.  This i s  the  case when the  
addi t ive white Gaussian noise assumption i s  va l id .  A s ingle  b i t  e r ror  from 
t h e  b i t  detector ,  ca l led  a channel e r ror ,  i s  followed by an adjacent e r ro r ,  
when the data  a r e  converted from NRZ-M t o  the  o r ig ina l  form. 

The double e r ro r  conjecture i s  shown t o  be t r u e  by considering a l l  possi- 
b l e  sequences of 0 and 1 of length 2 .  This is  i l l u s t r a t e d  i n  f igures  3(c)  
and (d ) ,  where E represents an or ig ina l  channel e r r o r  caused by noise i n  
the  b i t  detector  and E '  corresponds t o  an e r ro r  i n  the  reconstruction from 
NRZ-M t o  t h e  or ig ina l  da ta  form. Figures 3 (e ) ,  ( f ) ,  (g) ,  and (h) show the  
e f f ec t s  of two and three successive e r ro r s  i n  t h e  b i t  detector .  

NRZ-M d i f f e r s  from NRZ-L i n  several  important respects  when data  are 
grouped i n  simple p a r i t y  checked words. In order t o  de tec t  s ingle  channel 
e r rors ,  pa r i ty  is  computed only on a l t e rna te  b i t s  on t h e  l e v e l  data  (NRZ-L) 
pr io r  t o  being converted t o  NRZ-M as i l l u s t r a t e d  i n  f igures  4(a)  and ( b ) .  
net  e f f ec t  of the e r r o r  carryover i n  the  NRZ-M format i s  t o  produce an in t e r -  
word influence with respect t o  e r rors  (see f i g s .  4(e)  and ( f ) ) .  
and t h e  performance degradation w i l l  be noted la ter  i n  the repor t .  

The 

This e f f ec t  
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The difference i n  de le t ion  r a t e  and word e r ro r  rate f o r  NRZ-M data  as 
compared t o  NRZ-L data  (see f i g .  2) is  due t o  the  e r ro r  carryover e f f ec t  from 
one word, W 1  t o  t he  immediately following word, W2. 
channel e r r o r  occurs i n  t h e  p a r i t y  b i t  of W 1 ,  then there  is the carryover 
e r ro r  in to  W2. It follows t h a t  a l l  s ing le  channel e r ro r s  i n  W2 w i l l  be unde- 
tec ted  e r ro r s  which would have been detected by t h e  p a r i t y  check i n  NRZ-L da ta .  
Also, if no channel e r ro r  occurs i n  W2 preceded by a p a r i t y  e r ro r  i n  W 1 ,  then 
t h e  word W2 w i l l  be discarded due t o  p a r i t y  of W2; hence, t he  delet ion rate is  
increased. 

For example, when a 

In  order t o  include these carryover e f f ec t s  i n  the  formulations of dele- 
t i o n  rate and word e r ro r  probabi l i ty  ( ra te) ,  consider t h a t  portion of t he  
words which i s  not influenced by adjacent s ingle  and double e r rors ,  namely, 
(1 - E )  where E = Pe. If it is assumed tha t  Pe is  small enough t h a t  t h e  
occurrences of other than s ingle  and double e r ro r s  i n  words a re  negligible,  6 
may be closely approximated by 
useful f o r  t he  s implif icat ion of some equations t o  be developed. 

E = ( l /7)P(lE)  + (2/7)P(2E). This form i s  

The words t h a t  w i l l  be deleted as a r e s u l t  of p a r i t y  tagging include 

(1) Tagged words deleted because of one channel e r ro r ,  and not affected 
by e r ror  carryover. The probabi l i ty  of occurrence is  P ( U ) ( 1  - E ) .  

(2)  Words with no e r ro r s  and words with two channel e r rors  which a re  
(The previous word has an deleted because of  t h e  e r ro r  carryover e f f e c t .  

e r ro r  i n  the  p a r i t y  b i t  .) 
Hence t h e  delet ion rate is  

The probabi l i ty  of occurrence i s  E[P(OE) + P(2E)]. 

RD = (1 - €)P(lE)  + E[P(OE) + P(2E)] (7) 

I n  the  words remaining, t he  undetected e r ro r s  contributing t o  t h e  word 
e r ro r  probabi l i ty  a r e  

(1) The protion of words with two channel e r ro r s  and not affected by 
carryover (1 - E ) P ( ~ E )  

(2) The portion of words with s ingle  channel e r ro r s  preceded by e r ro r s  
t h a t  occurred i n  par i ty ,  EP(1E). Hence, t he  word e r ro r  probabi l i ty  is  

- - (1 - E ) P ( ~ E )  + EP(LE) 
pwE 1 - RD 

The s i tua t ion  i s  shown schematically i n  rows 1 t o  3 of f igure  5 ,  and 
versus RD i s  p lo t ted  i n  f igure 2 .  

P m  

THE LIKELIHOOD DELETION STRATEGY 

In the  previous sect ion t h e  concepts of word e r ro r  rate and word delet ion 
r a t e  were introduced as being na tura l  consequences of organizing data i n  
words, each word being p a r i t y  checked. In t h e  following sections the  

6 



l ikel ihood de le t ion  s t ra tegy  w i l l  be developed. It w i l l  be shown by means of 
a mathematical model t h a t  de le t ion  versus e r ro r  r a t e  trade-offs can be made by 
using t h e  individual b i t  e r ro r  probabi l i t i es  determined from t h e  data  demodu- 
l a t i o n  process. 

S t a t i s t i c a l  Model of Received Telemetry Data 

The following two assumptions w i l l  be made i n  the  development of a sta- 
t i s t i c a l  model of t h e  received telemetry da ta .  
biphase modulated before transmission. This binary signaling alphabet i s  theo- 
r e t i c a l l y  optimum (see ref. 4, ch. 8 ) .  
noise is  assumed t o  be added onto t h e  received telemetry s igna l  with coherent 
matched f i l t e r  detect ion techniques used a t  the  receiver.  Experimental results 
i n  a l a t e r  sect ion w i l l  ve r i fy  t h e  second assumption t o  be approximately va l id  
f o r  the  Pioneer V I  telemetry. Under these assumptions, the  probabi l i ty  densi ty  
function of the  matched f i l t e r  output is normal and is  shown i n  f igure  6(a) ,  
where 
t r u e  value of t he  transmitted b i t  is 0, and p(vl) is  the  densi ty  when the  
t rue  value i s  1. Henceforth, t h e  matched outputs, v, w i l l  be cal led 

integrate" and "dump" l eve l s  (I  and D The shaded area  under the  
curve represents t he  probabi l i ty  of a channel b i t  e r ro r ,  Pe, i n  par t icu lar ,  
t he  probabi l i ty  t h a t  a transmitted 0 w i l l  be interpreted as a 1 i n  the  
hard decision process following the  I and D output. 

F i r s t ,  t he  telemetry data  are 

Second, independent white Gaussian 

p(vo) is t h e  probabi l i ty  dens i ty  of t he  matched f i l t e r  output when t h e  

l e v e l s ) .  11 

Assuming there  i s  no b i a s  t o  0 or 1 errors  and the  variances a r e  equal, 
t he  analysis  i s  simplified when the  s t a t i s t i c a l  model i s  represented by a 
s ingle  standarized Gaussian probabi l i ty  d i s t r ibu t ion  where the mean i s  0 and 
the  variance is  1. x = v - T/a 
with mean and variance 
t r ibu t ion  for 
f o r  P(v1) is  the  mirror image of tha t  fo r  P(vo) .  Figure 6(b) has been 
redrawn i n  two d i s t r ibu t ions ,  f igures  7(a)  and 7(b) .  
d i s t r ibu t ions  f o r  t h e  correct  b i t s  and the  e r ro r  b i t s ,  respectively.  Figure 7 
a l s o  includes the  e f f ec t  of truncation due t o  the  f i n i t e  dynamic range of the  
c i r c u i t s .  The e f f ec t  i s  minimal, it simply r e f l e c t s  t he  small proportion of 

Hence, i n  t e r m s  of t he  standardized var iable  
px = 0 and o$ = 1, respectively,  t he  normalized dis-  

vo, p(x), is  shown i n  f igure  6(b) .  The standardized d i s t r ibu t ion  

These f igures  show the  

l eve l s  which would 
amplitude. 

The I and D 
w e l l  as s implici ty  
i s  i n  e r ror ,  given 

f a l l  outside the  range in to  the  l eve l s  of l a rges t  absolute 

l eve l s  now w i l l  be quantized f o r  convenience of analysis  as 
of appl icat ion.  
i t s  quantized I and D l e v e l  vj, is: 

The probabi l i ty  tha t  a received b i t ,  r j ,  

Pe j 
P(E.) = 

J Pej + Pcj 

and the  probabi l i ty  t h a t  t h e  b i t  i s  correct  is: 

(9) 

PCj 
P(Cj) = 

3 Pej + Pc 
(10) 
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where 

A quantization scheme is  i l l u s t r a t e d  i n  f igure  7 where equally spaced 
output are given, in te rva ls  over 3/12 of t he  l i n e a r  range of the  

with t h e  fourth in t e rva l  taking i n  t h e  remaining 9/12. 
t h i s  i s  approximately an optimum method of quantizing f o r  t h e  given number of 
quantization in te rva ls ,  namely 4. 

I and D 
A s  w i l l  be shown later, 

It stands t o  reason t h a t  t he  l eve l s  which are more l i k e l y  t o  be i n  e r ro r  
should be more f i n e l y  quantized ( r e f .  5 ) .  
t i o n  scheme of dividing the  l eve l s  i n to  n in te rva ls  i s  defined as follows: 
t he  scheme w i l l  be ca l led  l e v e l  quantization when there  are al together  
n in te rva ls  on each side of zero of the  d is t r ibu t ion ,  and t h e  n - 1 leve l s  
close t o  zero are equally spaced in t e rva l s  each of 1/m 
output dynamic range. 
l e v e l  scheme. 

For fu ture  reference,  t h i s  quantiza- 

n/m 

of t h e  t o t a l  I and D 
The scheme of f igure  7 would therefore  be ca l led  a 4/12 

Cri ter ion f o r  t he  Detection and Deletion Method 

The s t a t i s t i c a l  model w i l l  now be applied t o  develop a c r i t e r i o n  fo r  
delet ing questionable words given t h e i r  I and D l e v e l s .  

Because there  is  no p a r i t y  check provided t o  de tec t  an even number of 
channel e r ro r s  i n  a word, no procedure can be establ ished t h a t  could detect  
such er rors  with cer ta in ty .  
therefore,  only be detected on a probabi l i s t ic  bas i s .  Since fo r  t he  range of 

Pe of i n t e re s t ,  t he  e r ror  contribution due t o  three  o r  more e r ro r s  i s  negli- 
g ib le  compared t o  s ingle  and double e r rors ,  t he  following is  considered a 
measure of t he  occurrence of double e r ro r s  i n  the  NRZ-L case.  Given t h a t  not 
one e r ro r  occurs i n  a word ( i . e . ,  a word without a p a r i t y  t a g ) ,  and given t h e  
I and D 
been derived i n  appendix A t o  be 

An even number of channel e r ro r s  i n  a word can, 

l eve l s ,  t he  probabi l i ty  t h a t  two o r  more e r ro r s  occur i n  a word has 

;I' [1 - P(Ek)I 
- ~ (12) k= 1 

P(>2E/#lE) - = 1 - 7 

This equation is  the  bas i s  f o r  de le t ing  questionable words. For each 
word t h a t  has not been tagged by the  p a r i t y  check, t he  probabili ty,  
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P(_>2E/#lE), could be computed. If the  value exceeds a preassigned threshold, 
t h e  word i s  marked and discarded as a word with most l i k e l y  two e r ro r s  i n  it. 
Actually, t h i s  c r i t e r i o n  w i l l  a l s o  discard a small percentage of words with no 
e r rors .  
removal of words having two er rors ,  P(R/2E), and a probabi l i ty  of removal of 
words having no er rors ,  P(R/OE). 
delet ion r a t e s  and word e r ro r  probabi l i t i es .  
P(R/OE) versus threshold and t h e  method of determining the  parameters i s  
described i n  appendix B. 

Thus, there  results as a function of threshold a probabi l i ty  of 

These can be used t o  determine the  resu l t ing  
Figure 8 shows P(R/2E) and 

Deletion R a t e  and Word Error P rob i l i t y  f o r  NRZ-L Data 

Without spec ia l  processing of the  data ,  only t h e  s ingle  e r ro r  tagged words 
would be removed. With processing, t he  new de le t ion  rate and word e r ro r  
probabi l i ty  a re  functions of t he  de le t ion  threshold of the  l ikelihood double 
e r r o r  detection scheme as shown below. 

The number of words removed is  the  sum of t h e  following three  terms. 

(1) Number of p a r i t y  tagged words 

(2) Number of double e r ro r  words removed by double e r ror  detect ion 

(3) Number of zero e r ro r  words removed by double error detect ion.  

Dividing each t e r m  by t h e  t o t a l  number of words received one obtains the  
delet ion r a t e  

RD = P(lE) + Pave(L2E/#lE)P(R/2E) + P(OE)P(R/OE) (13) 

where 

P(R/2E) = probabi l i ty  of a word being removed, given t h a t  a double channel 
e r ro r  e x i s t s  i n  a word 

and 

P(R/OE) = probabi l i ty  of a word being removed, given t h a t  there  is  no 
e r ro r  i n  a word 

Both P(R/2E) and P(R/OE) are functions of t he  de le t ion  threshold and 
Pave(_>2E/#lE) i s  t h e  a p r i o r i  p robabi l i ty  of two e r ro r s  given that there  is  
not one e r ro r .  (This probabi l i ty  is  derived i n  appendix A. 
with P(>2E/#lE) i n  t h e  previous sect ion where t h e  I and D l eve l s  are 
assumed given.  ) 

Note the  contrast  

The word e r ro r  probabi l i ty  is  simply the  nuther of t he  double e r ro r  words 
not removed by appl icat ion of t he  l ikel ihood de le t ion  scheme divided by the  
number of remining  words. 
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P(2E)[1 - P(R/2E)] 

I 

pwE= 1 - RD 

P(R/2E) and P(R/OE) have been computed f o r  various thresholds ( f i g s .  8(a) ,  (b), 
and ( c ) )  and fromthem RD and P m  w e r e  computed. In  f igures  9 and 10 P m  
has been p lo t ted  against  RD 
rates. These parameters were computed from equations (13) and (14) where 
P(R/OE) and P(R/2E) were determined by the  Monte Carlo method. 
Pm versus RD 
putations discussed i n  a later section. The data  show good agreement, thus 
proving the  v a l i d i t y  of t he  Monte Carlo method. 

f o r  various de le t ion  thresholds and b i t  e r ro r  

In f igure  10 
are compared f o r  a 4/12 l e v e l  scheme with the  theore t ica l  com- 

Deletion R a t e  and Word Error Probabi l i ty  f o r  NRZ-M Data 

In the  previous discussions,  the  results w e r e  based on receiving NRZ-L 
data  which produce no e r ro r  carryover. The e r ro r  carryover e f f ec t  f o r  NRZ-M 
data  makes the  simple appl icat ion of the  l ikel ihood de le t ion  method less 
ef fec t ive .  Therefore a somewhat more complicated overa l l  s t ra tegy  has been 
developed. This s t ra tegy  consis ts  o f  a sequence of th ree  s t ra tegies:  SO,  
de le t ion  of s ing le  e r ro r  words by p a r i t y  check; S1, t o  be discussed i n  the  fo l -  
lowing paragraphs; and S2, t h e  l ikelihood de le t ion  s t ra tegy  which i s  iden t i ca l  
t o  t h a t  described f o r  t he  NRZ-L da ta .  

The l a rges t  contribution of word e r rors  which causes NRZ-M t o  be worse 
than NRZ-L is made by s ingle  e r ro r  words which a r e  untagged because they fo l -  
low other s ingle  e r ro r  words with t h e i r  e r ro r  i n  t h e  p a r i t y  b i t .  The addi- 
t i o n a l  s t ra tegy  S1 has been developed t o  a l l e v i a t e  t h i s  carryover e f f e c t .  
For example, i f  Pe 
l / 7  P2(lE) = 1.32ix10-3 and may be compared t o  the  probabi l i ty  of a double 
channel e r ror ,  which i s  P(2E) = 4.97ix10-3. Thus, even i f  there  exis ted a 
perfect double e r ro r  reduction s t ra tegy  ( a l l  double e r ro r  words removed but  no 
others)  the  e r ro r  r a t e  would only have been reduced t o  21 percent of the  
or ig ina l  e r ror  probabi l i ty .  Therefore, before operating on untagged words 
with the  double e r ro r  reduction s t ra tegy (which is  S2), t he  r e l a t ive ly  effec- 
t i v e  s t ra tegy,  S1, w i l l  be applied i n  order t o  remove most of t he  e r r o r  carry- 
over untagged s ingle  e r ro r  words. 

i s  1.3 percent, t h i s  e r r o r  contribution is 

Strategy S1 i s  defined as follows: 

Remove the  untagged word following a tagged word if  among the  
l e v e l  c lasses  occupied by the  d i g i t s  of W 1 ,  t he  tag b i t  of W 1  i s  i n  
the  lowest c lass ,  but do not remove the  untagged word, W2, i f  it is  
preceded by two tagged words. 

I and D 

The las t  par t  of t he  s t ra tegy  i s  designed t o  keep the  delet ion r a t e  low by 
excluding the  r e l a t i v e l y  frequent case of two zero-channel e r ror  words follow- 
ing a s ingle  e r ro r  word with the  e r ro r  i n  t h e  p a r i t y  b i t ,  an event which has 
t h e  probabi l i ty  l/7 P(lE)P2(0E). Strategy S1 removes most of  t he  previously 
undetected e r ro r  words, and it a l so  removes some correct  words. 
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The two probabi l i t i es  required f o r  calculat ing the  effectiveness of S1 
have been determined by the  Monte Carlo method, by generating many s ingle  
e r ro r  words with the  e r r o r  b i t  i n  a known posi t ion and tabulat ing t h e i r  prop- 
e r t i e s .  These probabi l i t i es  are 

Pel = probabi l i ty  of detect ing t h e  e r ro r  i n  the  p a r i t y  b i t ,  given t h a t  
there  is  an e r ro r  i n  t h e  p a r i t y  b i t  

number of words where the  e r r o r  b i t  is  i n  the  

t o t a l  number of s ingle  e r ro r  words 
- - lowest qccupied c l a s s  of I and D l eve l s  

and 

= probabi l i ty  of unnecessarily removing a word following a s ingle  
e r ro r  word, given t h a t  t h e  e r ro r  i n  W1 i s  not i n  t h e  pa r i ty  b i t  

= probabi l i ty  t h a t  t h e  I and D l e v e l  of the  e r ro r  i n  W1 i s  not i n  
the  low c l a s s  and t h e  I and D l e v e l  p a r i t y  b i t  is  i n  the  low 
c l a s s  

pB1 

of words with the  e r ro r  not alone 
i n  the  low c lass  of I and D l eve l s  

t o t a l  number of s ingle  e r ro r  words 

average number of low l eve l  b i t s  i n  
such words (except f o r  the  e r r o r  b i t )  

n - 1  

number of words with t h e  e r ro r  not i n  the  low c l a s s  
t o t a l  nuniber of s ingle  e r ro r  words 

+ 

average number of low l e v e l  b i t s  i n  such ~- 
n - 1  

The numerical subscr ipts  on indicate  the  nuniber of e r rors  i n  W1. 
The number (n - 1) i n  these equations comes from the  f a c t  t h a t  t he  low l e v e l  
b i t s  a r e  d is t r ibu ted  among the  (n - 1) correct  b i t s  i n  the  n b i t  word. The 
following example f o r  an 0.8-percent b i t  e r ro r  probabi l i ty  and 
the  effectiveness of s t ra tegy  S1: 

PG and PB 

n = 7 shows 

- -  - 19149 = 0.9575 
p G l  20000 



and PB were evaluated by t h e  Monte Carlo method and are shown i n  
p G l  1 
f igure  11 f o r  a range of channel e r ro r  probabi l i t i es .  It i s  noted t h a t  while 
t he  f i n e l y  quantized system S1 has a lower de le t ion  rate than t h a t  of t he  
coarsely quantized system, the  e r ro r  detect ion f o r  t he  finely quantized system 
is  worse. 

For t he  formulation of t he  f i n a l  equations f o r  RD and pwE, it w i l l  be 
necessary t o  enumerate a l l  t he  conditions of one and two e r ro r s  i n  word number 
1, W1, and t h e  resu l tan t  e r r o r  s i tua t ions  t h a t  can occur i n  the  adjacent fol-  
lowing word nmiber 2, W 2 .  The enumeration i s  shown graphical ly  i n  f igure  5 
which w i l l  be explained i n  the  following text. In  t h e  f igure  it is  assumed 
t h a t  zero, one and two e r ro r s  i n  a word e s sen t i a l ly  exhaust a l l  poss ib i l i t i es ;  
indeed, f o r  a b i t  e r ro r  probabi l i ty  of 1 percent, P(lE) + P(2E) + P(0E) = 0.987. 
Rows 1 through 3 of f igure 5 have been explained i n  the  sect ion on pa r i ty  
e r ro r  check f o r  NRZ-M data .  
separates the pa r t  of S1 which says t h a t  untagged words are not removed i f  
they a re  preceded by two tagged words. (There are some other combinations 
which cause a s ingle  t ag  t o  appear due t o  an e r r o r  combination of three words. 
They have not been considered here,  since t h e i r  probabi l i ty  of occurring is 
negligible .) Besides giving the  equation f o r  t he  probabi l i ty  of each subevent 
the  numerical value fo r  
terms a re  negl igible .  Note t h a t  upon each branching, t he  probabi l i t i es  of the  
subevents add t o  1. Under each block, t he  jo in t  probabi l i ty  of the  subevent 
i s  shown. It is  obtained simply by multiplying the  jo in t  p robabi l i ty  of the  
more general subevent above t h e  block by the  probabi l i ty  of t h e  subevent. In  
row 3 t h e  tagged words which were not preceded by another tagged word are 
subdivided, according t o  whether they caused adjacent e r ro r  influence or not.  
(Tagged zero e r ro r  words, of course, are not subdivided.) 
subclassif icat ion takes place according t o  the  f i rs t  pa r t  of S1 which says, 
"remove the  untagged word following a tagged word, i f  t he  p a r i t y  b i t  of W1 i s  
i n  the  lowest I and D l e v e l  c lass ."  The values of PG and P are not 
shown, but they m u s t  be ce r t a in ly  l e s s  than 1. Comparison of the  jo in t  proba- 
b i l i t i e s  shown below row 6 shows t h a t  the  contribution t o  the  word removal of 
the events involving 

r e l a t i v e l y  la rge ,  0.48. 
i n  the  theo re t i ca l  formulation sect ion 

Rows 4, 5 ,  and 6 detai l  s t ra tegy  S1. Row 4 

Pe = 1 percent is  given as a means f o r  judging which 

In row 6,  a fur ther  

2 B2 

and P B ~  is  negl igibly small; however, P B ~  is  
pG2 

It w a s  calculated from t h e  theory program discussed 

when 
l eve l  f o r  t he  given type of sample. The number of untagged words removed by 
s t ra tegy S1 i s  shown on row 7. One observes that  fo r  t he  1 percent Pe 
example, 76 percent of the  previously undetected s ingle  e r ro r  words a r e  
removed a t  the  small cost of removing 0.2 percent of the  zero e r ro r  words. 
Row 8 shows the  remaining words a f t e r  s t ra tegy  S1. 
of the  t o t a l  number of words i n  tha t  c l a s s  reduced by t h e  n d e r  removed by 

nk are the  number o f  b i t s  i n  the  lowest occupied c l a s s  of I and D 

Each c l a s s  simply consis ts  
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s t ra tegy  S1. Row 9 represents t he  f i n a l  s p l i t t i n g  by appl icat ion of s t ra tegy  
S2 on the  remaining words. 
selected threshold.  

Numbers are not shown since they depend on the 

The e f f ec t s  of t he  three  s t r a t eg ie s  can now be read off  the  f igure .  The 
following expressions are i n  per u n i t  of t he  t o t a l  number of words. 

Total words remaining a f t e r  SO: 

EP(~E) + (1 - E)[P(OE) + P(2E)I 

Untagged e r ro r  words remaining a f t e r  SO: 

EP(~E) + (1 - €)P(2E) 
Zero e r ro r  words removed by S1: 

(1 - E)P(lE) ($)‘B~ -I- EP(0E) + - 2 - P(2E) 
7 E pBo 

P(0E) + 5 P(0E) 
6 P(0E) + 5 P(2E) + - 

- 7 7 

4 P(s~~)P(oE) 
where the expression i n  braces defines 

Untagged double e r ro r  words removed by S1 are:  

P(slg). 

P ( SIB) P ( 2 ~  1 
Untagged s ingle  e r ro r  words removed by S1: 

P(0E) + 2 P(2E) 
(1 - E)P(lE) 5 7 6 j $ pGl\ P(M) GP(SWP(lE) i I 7 7 

P(0E) + - P(2E) + - P(1E) 

which defines P(S%). 

Words remaining a f t e r  S1: 

[E - P(SQ) IP(=) + [(l - €1  - p(slB) I[P(OE) + P(2E) I 
Error words remaining a f t e r  S1: 

[E - P(SlG)IP(lE) + [(l - E )  - P(S1B)IP(2E) 

Deletion rate after S1 only (1 - words remaining a f t e r  Sl): 

RD1 = 1 - [ E  - P(S~G)]P(U) + [(1 - E )  - P(Slg)][P(OE) + P(2E)I (18) 



Word e r ro r  probabi l i ty  ( t o t a l  words remaining a f t e r  Sl) :  

Words remaining after S2: 

[ E  - P ( s l ~ ) ] P ( l E ) [ 1  - P(R/lE)I + [(l - E) - p(s1B)l[p(oE)[1 - P(R/OE)I 

+ P(2E)[1 - P(R/2E)]] 

Error words remaining after S2: 

[ E  - P ( s l ~ ) ] P ( l E ) [ 1  - P(R/U)I + [(1 - E) - P(SlB)lP(2E)[1 - P(R/2E)I 

Deletion r a t e  (1 - number of words remaining after S2): 

= 1- [E: - P(SJ -G) ]P(U) [~  - P(R/U)] + [(l - E) - P(Slg)]{P(OE)[l - P(R/OE)] 

(20)  

RD2 ( 
+ P(2E)[1 - P(R/2E)]] 

e r ro r  words remaining- after S2 
( s l  number of words remaining a f t e r  Word e r ro r  probabi l i ty  

[ E  - p ( S l ~ ) ] P ( l E ) [ l  - P(R/lE)] + [(I- - E )  - P(Slg)]P(2E)[1 - P(R/2E)] 
. .  . .  _ _  . P =  

WE2 - RD2 

(21 1 

Since a l l  parameters of t he  above equations have been previously computed, 
one can now p lo t  t he  effect iveness  of t he  l ikel ihood delet ion s t ra tegy  fo r  
NRZ-M da ta .  The results a re  shown i n  f igures  9 and 10. Comparison of  these 
two f igures  shows t h a t  t he  performance of t he  l ikelihood delet ion s t ra tegy  i s  
not degraded by any s igni f icant  amount by going t o  the  simpler 4/12 quantiza- 
t i o n .  Also, when comparing any two curves f o r  t he  same channel b i t  e r ro r  
probabi l i ty  f o r  NRZ-L and NRZ-M data  one not ices  the  e f f ec t  of s t ra tegy  S1, 
which reduces the  word e r ro r  probabi l i ty  f o r  NRZ-M t o  nearly t h a t  of NRZ-L a t  
a small cost of addi t ional  delet ion r a t e .  Figures 9 and 10 a l so  show t h e  
trade-offs between word e r ro r  probabi l i ty  and de le t ion  r a t e .  

THEORETICAL FORMULATION OF DATA WORD QUALITY CLASSIFICATION FROM 
QUANTIZFD I A N D  D LEVELS 

While the  Monte Carlo method i s  suf f ic ien t  f o r  obtaining the  performance 
of t he  probabi l i s t ic  e r ro r  detect ion method, it i s  useful  t o  have an e x p l i c i t  
theory. A s  w i l l  be shown i n  a l a t e r  section, t he  results of the  theory allow 
one t o  construct a simple log ic  network t o  c l a s s i fy  words as t o  t h e i r  qua l i ty .  
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In the  s t a t i s t i c a l  model, t he  word e r ror  probabi l i ty  of a given word 
does not depend on the  sequential  order of t he  various I and D l eve l s  i n  a 
word but only on t h e i r  absolute magnitudes. Thus, when we have a word length 
n and the  number of quantization l eve l s  is r, we are sampling from a m u l t i -  
nomial d i s t r ibu t ion  which has N sample points 

To give some examples, fo r  7-bit words with 4 quantization l eve l s  there  are 120 
samples, which a re  e a s i l y  enumerated, while f o r  the  same length of word but 
with 32 quantization leve ls ,  12,620,256 d i f f e ren t  samples can occur. 
event probabi l i ty  f o r  a given sample type k is  

The 

where n j  i s  the  number of  b i t s  f o r  which the I and D l eve l s  occur i n  the  
Y 

voltage in te rva l  j ,  n i s  C nj ,  and P j  is  the  probabi l i ty  tha t  the 
j=1 

l e v e l  of a given b i t  occurs i n  t h a t  i n t e rva l .  This probabi l i ty  is  the  sum of 
the  probabi l i t i es  of t he  l e v e l  being i n  the  in te rva l  due e i t h e r  t o  an e r ror  
o r  t o  a correct  b i t ,  namely 

The probabi l i ty  t h a t  no e r ro r s  occur i n  a given sample of type k, fo r  
1 < k < 120, i s  - -  

Pk(OE) = [P(C,)In1[P(C2)In2 * . Cp(cr)Inr (24) 

where n j  i s  the  number of b i t s  i n  the  quantum 
defined in  equation (10).  The probabi l i ty  t h a t  
i n  a sample of type k i s  

in t e rva l  j ,  and P(Cj) is  
a s ingle  channel e r ro r  occurs 

and the  probabi l i ty  t h a t  two or  more e r ro r s  occur i n  a pa r t i cu la r  sample, 
given tha t  there  i s  not exact ly  one e r ro r  i n  the  sample is  expressed as 



The correctness of t he  equations is  checked 
samples weighted by the  event probabi l i t i es  
t he  average event probabi l i t ies :  

by summing them over a l l  possible 
and confirming t h a t  they add t o  

For any given threshold + on Pk(_>2E/#lE), each sample k fa l ls  in to  one 
of two classes  depending on' Pk(_>2E/#lE) 1 % 
Actually i n  pract ice  several  thresholds 

f i ca t ion  of the  words may be considered as a qua l i ty  of word assignment. 

o r  Pk(l2E/#lE) < X, . 
j 

'may be set so t h a t  a l l  nonparity 
tagged words w i l l  be categorized o these thresholds.  This c lass i -  

The above probabi l i t i es  a r e  shown i n  t a b l e  I f o r  a 1-percent b i t  e r ro r  
probabi l i ty .  
qua l i ty  categories beginning with 1 
more e r rors ,  given not one e r ror ,  and 
probabi l i ty .  This allows one t o  calculate  t he  de le t ion  rate and the  word 
e r ror  rate f o r  NRZ-L data  exactly,= where untagged words above a selected 
e r ror  probabi l i ty  a r e  eliminated. 

Also shown a r e  c l a s s i f i ca t ions  of t he  word types in to  four 
fo r  t he  lowest probabi l i ty  of two o r  

f o r  words with the  highest e r ro r  4 

N 

4 

. - - 

lFor NRZ-M data  the  probabi l i t i es  Pk(xE) become conditional because of 
e r ror  carryover e f f ec t s .  
extended t o  express 

Hence, t h i s  theore t ica l  formulation i s  not e a s i l y  
RD and pwE. 
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is the  j t h  decision threshold.  The word e r ro r  rates versus 
where 
delet ion r a t e s  as functions of Pe are compared i n  f igure  10 with the  r a t e s  
determined by the  Monte Carlo method. In addition, t he  theo re t i ca l  formula- 
t i o n  w a s  used t o  determine the  optimum four l e v e l  quantizing scheme (see 
f i g .  12) . The 4/12 scheme proved t o  be optimum over a wide delet ion range. 

A s  can be seen from t ab le  I, a la rge  majority of t h e  120 sample types 
f a l l  i n  category 4, the  high e r ro r  probabi l i ty  category. 
allows the  construction of a r e l a t i v e l y  simple word c l a s s i f i e r ,  which needs t o  
dis t inguish only samples i n  types 1 t o  3, ca l l ing  a l l  other words c l a s s  4. 
A t  first glance, it would s e e m  tha t  the  word c l a s s i f i ca t ion  log ic  would have 
t o  be changed f o r  any change i n  b i t  e r ro r  probabi l i ty .  Figure 13 shows t h a t  
t h i s  i s  not necessary. It shows the  various de le t ion  r a t e s  f o r  constant XT 
with the  qua l i ty  of word assignments calculated separately fo r  each e r ro r  
probabi l i ty .  Figure 13 a l so  shows the  delet ion rates i f  t h e  qua l i ty  of word 
assignments fo r  P, = 1 percent are used for  de le t ion  of words with other 
e r ror  probabi l i t i es .  

This circumstance 

APPLICATION OF THE LIKELIHOOD DFLETION STRATEGY 

A s  shown i n  the  previous sections,  t he  4/12 quantization closely approxi- 
mates the detect ion performance of a 32/32 quantization. 
t i z a t i o n  regions the  required c i r cu i t ry  f o r  a c l a s s i f i ca t ion  scheme of 
nontagged words becomes f eas ib l e .  There are two reasons f o r  es tabl ishing only 
four categories i n  which t o  c l a s s i f y  the  nontagged words. The f irst  reason 
is that  one needs only a 2-bit  qua l i f i e r  f o r  each da ta  word; the  second is  
t h a t  the  system is  much simpler than a system with more categories.  

With the four quan- 

The theory program, discussed i n  t he  previous section, computes 
P(zD/#lE) f o r  each of the  120 word c l a s s i f i ca t ions .  
choose as many thresholds,  X T ~ ,  as desired t o  categorize the  words of a l l  
l e v e l  c l a s s i f i ca t ions .  In  pract ice  four a r e  chosen t o  r e s u l t  i n  a 
reasonable range of e r r o r  reduction, wher?&, represents no delet ion.  Then 
by select ing a su i tab le  
e r ro r  r a t e  he des i res .  

In  theory one can 

X T ~ ,  t he  experimenter can choose, within l i m i t s ,  t he  

A functional block diagram of a 'quality-of-word' categorizer i s  shown 
i n  f igure  14. The leftmost block of t h i s  f igure is a r e c t i f i e r .  It i s  needed 
t o  discard the  po la r i ty  information of t he  l eve l s  which must be removed before 
fur ther  processing. The l e v e l  detector  which follows c l a s s i f i e s  a l l  b i t s  of a 
word (according t o  t h e i r  I and D l eve l s )  i n to  four  quantization regions. 
Included i n  t h i s  functional block a re  four counters which t o t a l  t he  number of 
b i t s  per word having l eve l s  within each of t h e  four quantization regions. 
Thus, after b i t  7 of each word, the  counter values associate  the  word with 1 
of the  120 categories itemized i n  the  first four columns of tab le  I. Using 
the corresponding "Quality of word category'' of table I, one can e a s i l y  write 
t h e  log ic  design equations f o r  t r ans l a t ing  the  E O  allowable s t a t e s  of t he  
4 counters in to  4 word qua l i ty  categories.  
represented by t h e  "Word c l a s s i f i ca t ion  logic" block in  f igure 14. 

These decision logic  functions a re  
TO 



implement s t ra tegy  S1, t h e  decision log ic  i s  modified when an e r ro r  carryover 
is  suspected which would mask a s ingle  e r ro r  i n  t h e  word. This function i s  
indicated by the  block "Lowest l e v e l  detector  and memory f o r  s t ra tegy S1" i n  
f igure  14. In  summary, t he  categorizer makes use of the  I and D l eve l s  of 
each nontagged telemetry word and c l a s s i f i e s  it according t o  i ts  l ikel ihood of 
being i n  e r ro r .  

EXPERIMENTAL VERIFICATION 

Experimental data  were obtained and analyzed f o r  two reasons; t o  v e r i f y  
the  assumptions made f o r  the  s t a t i s t i c s  of t he  data  demodulator matched f i l t e r  
output, and t o  compare the  performance of  an ac tua l  system with t h a t  predicted 
by the  l ikelihood de le t ion  s t ra tegy .  

T e s t  Configuration 

To ver i fy  experimentally the  analysis  by using modulation and demodulation 
hardware, data  were obtained employing the  Deep Space Instrumentation F a c i l i t y  
(DSIF) receiving s t a t i o n  a t  Goldstone, Cal i fornia .  
used i n  conjunction with spacecraft  and ground instrumentation developed f o r  
Pioneer V I .  A block diagram of the  test  setup is  shown i n  f igure 15. To pro- 
vide a known b i t  stream the  Pioneer Data Format Generator was used as a data  
source f o r  the  Pioneer S-band tes t  t ransmit ter .  The output of the  t ransmit ter  
fed an adjustable  a t tenuator  t o  provide the  input t o  the  receiver a t  Goldstone. 
Since the  transmission channel noise of a deep space probe a t  S-band is pre- 
dominantlythe thermal noise of the  receiver ,  t h i s  setup permitted a r e a l i s t i c  
t e s t .  

The s t a t ion  equipment w a s  

In the  ordinary operation of t he  ground s t a t ion ,  several  t racks of da ta  
are simultaneously recorded. For t h i s  experiment, t he  r a w  input s ignal  t o  the  
demodulator and the decision outputs of t h e  on-site biphase demodulator/bit- 
synchronizer w e r e  recorded. The r a w  biphase s igna l  t rack  was l a t e r  used as a 
s ignal  source f o r  an off- l ine biphase demodulator ident ica l  t o  the  one a t  
Goldstone. To t h i s  data  demodulator an I and D hold c i r c u i t ,  whose function 
i s  i l l u s t r a t e d  i n  f igures  4(c) and (d ) ,  w a s  added which permitted t h e  preser- 
vation of the  sampled matched f i l t e r  l e v e l  f o r  a f u l l  b i t  time. The hold 
c i r c u i t  simplified the  sampling of the  l eve l s  required f o r  d ig i t i za t ion  of t he  
I and D l eve l s .  The data  demodulator decisions w e r e  recorded on d i g i t a l  
tape f o r  fur ther  analysis .  

Computer programs w e r e  wri t ten t o  use t h i s  d i g i t a l  tape as input i n  order 
t o  obtain the  following information. F i r s t ,  the  NRZ-L b i t  e r ro r  sequence was 
determined. This w a s  possible since t h e  data  format generator at  Goldstone 
produces a known b i t  sequence. Second, the NRZ-L b i t  e r ro r  sequence was con- 
verted t o  the  demodulated NRZ-M er ror  pa t te rn .  
of t he  l ikelihood de le t ion  s t ra tegy  f o r  NRZ-M data  was determined. 
various s t a t i s t i c a l  parameters of t he  I and D l eve l s  were gathered i n  order 
t o  determine how w e l l  t he  postulated s t a t i s t i c a l  model f i t  t he  ac tua l  da ta .  

From these data the  performance 
Third, 
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T e s t  R e s u l t s  

Since the  receiver and data  demodulator are only an approximation of t he  

(1) The l e v e l s  are samples 
idea l  matched f i l t e r ,  t he  I and D l eve l s  deviate s l i g h t l y  from the  postu- 
l a t e d  propert ies .  
from a Gaussian dis t r ibut ion;  (2) Successive I and D l eve l s  are s t a t i s t i c a l l y  
independent. 
well these postulated propert ies  are m e t  by a real system. 

The postulated propert ies  are: 

The experimental data  w e r e  analyzed i n  order t o  determine how 

For each of t he  two channel b i t  e r ro r  probabi l i t i es  of 0.8 and 1.3 per- 
cent,  the  l e v e l  range was divided according t o  the  4/12 quantization 
model. For each l e v e l  category, t he  I and D value of t he  following b i t  w a s  
c l a s s i f i ed  according t o  the  four categories with the  e r ro r  b i t  and the  correct  
b i t  values separately tabulated.  This permits t h e  p lo t t ing  of t he  cumulative 
I and D l e v e l  d i s t r ibu t ions  given t h e  previous l eve l .  The results appear i n  
f igures  16(a) and (b)  p lo t ted  on normal probabi l i ty  graph paper. 
they were not separately plot ted,  t he  d is t r ibu t ions  of negative and posi t ive 
l eve l s  w e r e  coincident except fo r  sign, so t h a t  no b i a s  or nonsymmetric c i r c u i t  
gains were noted i n  t h e  data  demodulator o r  I and D hold c i r c u i t  output. It 
should be noted t h a t  t he  normalized negative I and D voltages represent 
e r rors ,  and the  cumulative d is t r ibu t ions  up t o  zero represent t h e  e r ro r  proba- 
b i l i t i e s  Pes 

I and D 

Although 

Regarding the  f i rs t  postulate ,  the  d is t r ibu t ions  are seen from f igure  16 
t o  be normal well i n to  the  t a i l s .  A s  f o r  the  second postulate ,  the  f igures  
show t h a t  f o r  l eve l s  following t h e  highest l e v e l  e r ro r  c l a s s  (see curves 
labeled I i n  f i g .  16) the  e r ro r  probabi l i t i es  a r e  high, Pe = 4.1 percent and 
2.0 percent compared t o  the  equivalent values f o r  the e n t i r e  d i s t r ibu t ion  
Pe = 1.30 and Pe = 0.80 percent (see curves labeled I11 i n  f i g .  16 ) .  Curves 
labeled I1 i n  f igure  16 are the  d i s t r ibu t ions  f o r  b i t s  following e r ro r  b i t s  
which a r e  i n  the lowest l e v e l  quantization c l a s s .  These curves show an in te r -  
mediate e r ro r  probabi l i ty ,  which indicates  a functional dependence of increas- 
ing b i t  e r ro r  probabi l i ty  fo r  I and D l eve l s  immediately following erroneous 
I and D leve ls  of increasing magnitude. Thus, one concludes tha t  for the  two 
er ror  probabi l i t i es  analyzed, t he  s t a t i s t i c s  of the  b i t  l eve l s  were dependent 
on the  magnitude of t he  l eve l s  preceding t h e m ,  thus forming a weak Markov 
chain. The net  r e s u l t  of the  adjacent b i t  l e v e l  correlat ion i s  t o  give a 
higher double channel e r ro r  probabi l i ty  a t  the  expense of fewer s ingle  e r ro r s  
as compared t o  the  binomial model. Thus, the ac tua l  word e r ro r  probabi l i ty  
i s  higher than would be computed d i r e c t l y  from the  channel b i t  e r ro r  rate f o r  
an independent -b i t  decision model. 

The data  from the  ac tua l  system w e r e  a l s o  used t o  determine the  effect ive-  
ness of the hardware r ea l i za t ion  of the  l ikel ihood delet ion scheme. More than 
a t o t a l  of 1.5 million b i t s  of data  for  two channel b i t  e r r o r  r a t e s  of 
Pe = 1.30 and Pe = 0.80 percent were used f o r  t h e  analysis .  
e r ro r  detect ion by t h e  l ikel ihood de le t ion  s t ra tegy  f o r  NRZ-L da ta  are p lo t ted  
i n  f igure  17, curves I and 11. The performance i s  t o  be compared with t h a t  of 
the  independent-bit decision model of curves I11 and IV. The s a m e  da ta  w e r e  
converted t o  the  NRZ-M format and the  results a r e  given i n  f igure  18,curves I 
and I1,and compared t o  the  postulated model, curves I11 and IV. For both 
NRZ-L and NRZ-M da ta  t h e  detect ion scheme is  seen t o  be somewhat less effect ive 

The r e s u l t s  of 



than t h a t  predicted by t h e  model because of t he  intersynibol influence of 
adjacent I and D l eve l s .  However, f o r  t he  Pioneer telemetry appl icat ion 
t h i s  difference from t he  predicted performance s t i l l  permits effect ive trade- 
o f f s  t o  be achieved between word e r ro r  probabi l i ty  and delet ion rate. 

CONCLUSIONS 

A l ikel ihood e r ro r  detect ion scheme f o r  p a r i t y  e r ro r  checked telemetry 
The scheme uses the  b i t  qua l i t y  information contained i n  

This l e v e l  information 
data  was derived. 
t he  matched f i l t e r  (data demodulator) l e v e l  output. 
permits a qua l i ty  of word assignment t o  be made f o r  a l l  words without p a r i t y  
e r ror  tags .  The qua l i t y  assignments can be used t o  remove those words which 
have the  highest  e r ro r  probabi l i ty ,  th.m allowing experimenters t o  reduce the  
undetected word e r ro r  r a t e  a t  a given communication range, or  t o  increase com- 
munication range a t  a given word e r ro r  probabi l i ty  before a d i sc re t e  reduction 
of t he  b i t  rate becomes necessary. 

In  the  i n t e r e s t  of a simple physical rea l iza t ion  of the  described scheme, 
it was determined t h a t  a four-level matched f i l t e r  output quantization as well 
as a four-category specif icat ion of the  word qua l i ty  w a s  suff ic ient  t o  
approach the  f u l l  power of the  method. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  April  26, 1966 
125-23-02-02 
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APPENDIX A 

PROBABILITY OF TWO OR MORE ERRORS IN A WORD 

For t he  double e r ro r  detection scheme, the  probabi l i ty  of two or more 
er rors  i n  a 7-bit word, given there  is  not one e r ro r ,  i s  

P(>2E/#lE) = P (2 o r  more errors/not 1 er ro r )  

P (2 or more e r ro r s )  
P (not 1 e r ro r )  

- - 

But the  probabi l i ty  of two or more e r ro r s  i s  

[1 - P (no e r ro r s )  - P (exact ly  1 e r r o r ) ]  

7 

7 
7 1 $$ 7 

= 1 - l-I P(Ck) - n P(Cj) 
k= 1 j = i  

i= 1 

The probabi l i ty  of not one e r ro r  i s  

Then 
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I 

1 - n 7 P ( C j )  

j = l  
i=i 

22 



APPENDIX B 

MONTE CARLO METHOD FOR THE QUANTIZED I AND D LEXEL 

SYSTFJ4 SIMULATION 

The purpose of t he  Monte Carlo method is  twofold: it allows study of t he  
improvement when more quantization l eve l s  are used, and it allows invest igat ion 
of t he  extension of t h e  e r r o r  correcting method f o r  NRZ-M data  f o r  which a 
complete theory would be cmibersome. 

The following method was used t o  generate words with a spec i f ic  number of 
e r rors  t o  tes t  t h e  correcting eff ic iency of t h e  method against  various 
decision thresholds.  A un i t  i n t e rva l  w a s  divided i n  t h e  proportion of 
and another i n t e rva l  i n  t h e  proportion of A random number 
generator with uniform d i s t r ibu t ion  between zero and one was used t o  provide 
a pointer t o  se lec t  quantized l eve l s  fo r  t he  correct  b i t s  from Pc, and fo r  
the  required number of e r r o r  b i t s  from the  Pe. In t h i s  manner many zero, 
s ingle ,  and double e r r o r  words were constructed with various e r ro r  probabili-  
t i e s  and 
measure of tze effect iveness  of t h i s  c r i t e r ion .  
word suspected of double e r ro r  i s  plot ted versus the  threshold XT i n  
f igure 8. 

Pc 
Pe (see f i g .  7 ) .  

P(>2E/#lE) w a s  computed f o r  these groups i n  order t o  obtain a 
The probabi l i ty  of removing a 

For Pe = 0.01 ( f i g .  8 ( b ) )  and XT = 0.01, t he  probabi l i ty  of removing a 
word with no e r ro r s  is  about 0.03 while t he  probabi l i ty  of removing a word 
with two e r ro r s  i s  approximately 0.83. I n  f igure  8, the  data  are shown for  
both the  f i n e l y  quantized divis ions 32/32, and the optimum coarse divis ion,  
4/12. 
f i ve  b i t  accuracy t o  a two b i t  accuracy i n  quantizing is  minimal. The main 
difference i s  t h a t  f o r  t he  coarsely quantized divis ions 
decrease i n  s teps  instead of decreasing smoothly. 

Figure 8 shows t h a t  t he  degradation i n  performance i n  going from a 

P(R/x.E) tends t o  
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1 6 ,  
17 
18 
19 

,I 20 
l 2 1 '  

22 

24 
25 
26 

23 

I word in a given Quality I/ k 1, i I 
K Pevk ' Pk(22E/#B) C P  pk( u, 

' 
I cat eaorv ' classification 

4 1 o 2 o .2032~-02 
, 4 o 3 o , 0.1006~-02 

4 0 2 1  0.18893-02 ~ 

4 0 1 2  o .1183~-02 
4 0 0 3  0.24703-03 
3 4 0 0 0.3628E-03 ~ 

3 3 1 0 ' 0.845OE-03 

3 2 2 0 ' 0.73803-03 
3 2 1 1  0.92443-03 
3 2 0 2  0.28933-03 

3 3 0 1  0 -5292E-03 
2 
3 
4 

0.32903-05 
0.29993-04 
0.15863-03 

o ,18473-03 
0 m71023-03 

0 92993-03 
0.41233-02 
0 .4645E-02 
o .20573-01 

0.18133-02 

0.60663-02 

o .1291s-o1 

o .2191~-oo 
0.86693-03 
o .28053-02 
0 .llllE-Ol 
0.75833-02 
o .2807~-01 
o .10083-00 

0 91093-01 
0.46463-03 

0 -73933-02 

0.24303-01 
0.95933-01 

0.42253-01 
0 .11923-00 

0.99683 00 
0.99773 00 
0.99803 00 

[u 
VI 

119 0 0 ; ;  0.35893-10 0.61973 00 i; 0.10003 01 
120 0 0 0 7  o .3211-~-11 o .6956~ 00 4 0.10003 01 

0.99733 00 ' 

0.98643 00 

o .7080~ 00 
0.93383 00 

0.97563 00 
0.92333 00 
0.70033 00 
0.87423 00 
0.66293 00 
0.50263 00 

0.69263 00 

0.96493 00 
0.91343 00 , 

0.86473 00 
0.65563 00 
0.497l~-00 
o .81853 00 
0.62063 00 
0.47063-00 
0.35683-00 
0.95433 00 
0.90343 00 

0.85523 00 

0.49173-00 

0.68503 00 

o .64843 00 

0 .llg53-00 
0.90633-01 

0.26563-02 , 

o .6609~-01 

o .7560~-01 

0.13563-01 

0.29133-00 
0.24233-01 

0.29593-00 
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Figure 3. - Relationship between NRZ-L and NRZ-M data i n  a s e r i a l  b i t  stream. 
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Figure 9.- Performance of t h e  l ikelihood delet ion s t ra tegy  for NRZ-L and NRZ 
data  using the  32/32 quantization; data  points are calculated values for 
d i f f e ren t  thresholds.  
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.@re 10.- Performance of the l ikelihood delet ion s t ra tegy  f o r  NRZ-L and NRZ-M 
data  using the  4/12 quantization; data  points  are calculated values f o r  
d i f fe ren t  thresholds. 
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(b) Block diagram of analysis t es t  setup at Ames Research Center. 

Figure 1.5. - Test setup f o r  experimental ver i f icat ion.  
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Figure 1.7. - Comparison between simulation and experimental performance for the 
likelihood deletion stratem f o r  NRZ-I; data using 4/12 quantization. 
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